
Adventures in Alice Programming // Glossary of Useful Terms
by Michael Marion // July 2012

Worlds, methods, functions, properties, variables - it’s pretty easy to get all of the terminology
and concept matter confused when it comes to programming in Alice. To that point, we’ve
developed this handy reference to use. Hopefully it helps you not to get mixed up. Enjoy!

World
A world in Alice encompasses everything. Just as we’d say that everyone and everything exists
in our world in real life; every object, method, event, or anything else lies inside the world in
Alice. The whole .a2w file represents the world.

Object
An object is just what it sounds like. Any sort of three-dimensional shape such as a person,
animal, piece of furniture, building, or anything else of the sort in your world is an object. Most
objects are added to the world via the Add Objects button, but some - the ground, camera, and
light, for instance - are there by default. There are also two-dimensional objects such as text and
billboards.

Properties
An object’s properties are also what they sound like. All objects have certain properties - whether
or not they’re showing, their color, their position, and so forth.

Color
Defines the color of an object. There is a limited number of color choices in Alice,
but it covers all primary colors and some extras, including red, blue, green,
yellow, black, and cyan. To specify a white object, select “no color”.

Opacity
Defines the transparency of an object. Unlike isShowing, setting the opacity to a
middle amount allows it to be only slightly transparent. 0% opacity renders an
object invisible, while 100% opacity renders an object completely opaque. When
putting the Opacity property in a method, setting a duration will cause the object
to gradually fade in or out of the scene.

isShowing
Determines whether or not the object is visible. A less gradual transition than
changing the opacity setting.

Vehicle
Establishes a one-way relationship between this object and the vehicle object.
Setting an object’s vehicle means that an object will remain the same distance
and orientation away from its vehicle. If the vehicle moves, the object moves the
same distance and direction. If the object is told to move, the vehicle does not
move with it.

Skin Texture
Allows the user to wrap a two-dimensional image around the object. Some
objects, such as the ground, have built-in textures - the ground’s textures include
grass, dirt, snow, sand, space, and water.

Filling Style
Seldom used in Alice. Allows the user to render the object as a solid, wireframe, or
points. Try playing around with this to see what it does!

Class
A class could be described as a template or blueprint for an object. All objects of the “Chicken”
class, for instance, have the shape of a chicken, the color of a chicken, and can do the all the
same things as a chicken. When we add an object to our world, we’re creating an instance of
that class - we’re using the blueprint to make objects of that type.

Method
A method is a series of instructions given to objects that describe actions to take. All objects in
Alice have some methods already built-in. The vast majority of objects can “say”, or “move”, or
“turn”, and so forth. However, we can write our own methods for objects that are built from
smaller ones. This is one of the fundamental ideas in computer programming - using smaller
methods as building blocks for more complex commands.

For instance, let’s say I wanted to make an object walk realistically in Alice.
Walking is more than just moving forward, right? I would write smaller methods
that have the legs bend at the knees and move one at a time. I could write other
methods that make the arms swing back and forth. I could then combine these
methods into a larger “walk” method that would make the character walk like a
human being.

Parameters
Methods can have parameters, which are essentially pieces of information that the method
needs to execute. In fact, most built-in methods in Alice have parameters. When you tell an
object to “move”, for instance, you have to specify a distance, right? This distance is the
parameter. There is one “move” method that applies to every object in Alice; by using a
parameter, we can tell the object to move as far away as we want.

Variables
The world, objects, and methods can also have variables, which are essentially placeholders for
any value that can change. Variables are often used to store particular pieces of information that
we want to use later on. Variables can be made within objects by using the properties tab or
within methods by clicking on create new variable in the top-right corner of the method editor.

Types of Variables
When we want to use a variable to store some value, we have to specify what type of value it is.
Is it a number? Is it a true or false value? Is it a word or phrase? Whatever type it is can only store
that certain type - a number variable can only store a number.

There are also different levels of variables.

World-Level Variables
Are created under the “world” object. They can be used across all other objects and
methods.

Class-Level Variables

Are created by default within a specific class. Objects that are dragged in from that
class all share the same variable(s). These variables can be used by all methods
created under that object.

Method-Level Variables
Created by clicking “create new variable” in the top-right corner of the method
editor. These are used only within a single method and cannot be shared across
other methods.

Importing Images
You can import an image into Alice to use later as a texture for an object by going to “File” and
clicking on “Import Image”. Doing this will not cause any immediate change to your Alice world -
it simply introduces the image to the Alice world’s file system so that it can be used later on in
the Alice world.

You can import an image by going to File in the top-left menu, selecting “Import Image”, and
choosing the image file on your computer. Imported images can be found by going to the
world’s properties and clicking on “Seldom Used Properties”.

Billboards
Creating a billboard with a 2D image causes an immediate change to your world. It
automatically creates a flat box and maps your image on it, making a “billboard” of your image
that you can then manipulate in your world.

Events
By themselves, methods do not actually make objects do anything. Sure, you might know how
to get to my house from Duke, but you wouldn’t come to my house unless I called you and told
you to visit me, right? We use events to call our methods. Events tell objects when to carry out
their methods.

When The World Starts
Methods called by this event start as soon as you click “Play”.

When A Key Is Typed

Methods called by this event start once you press a certain key. You can specify
which key triggers the method.

When The Mouse Is Clicked On Something
Methods called by this event start when the mouse is clicked on an object. You can
specify which object triggers the method when clicked.

While Something Is True
Methods called by this event will happen over and over again until the condition
becomes false. You must specify the condition under which the event is triggered.
You can also right-click on this method to change it to “When Something Becomes
True”. Methods called by that event will occur once when the specified condition
becomes true.

When A Variable Changes
Similar to “When Something Becomes True”, although this could be modified to
encompass a variety of situations, such as when a boolean variable becomes false,
when an object changes color, and so on.

Let The Mouse Move Objects
This event does not call or trigger any methods. Instead, it allows you to specify a
list of objects and makes the objects in that list clickable and draggable by the
mouse while the world is playing. You must use a list with this event.

Let The Arrow Keys Move Subject
This event does not call or trigger any methods. Instead, it allows you to specify a
single object and allows you to use the arrow keys to move that subject around
the world.

Let The Mouse Move The Camera
This event does not call or trigger any methods. Instead, it allows you to click and
drag the view and move the camera around the world.

Let The Mouse Orient The Camera

This event does not call or trigger any methods. Instead it allows you to click and
drag the view and move the camera’s point of view from a fixed point. Use this
method to manually look around your world while it plays.

Functions
Functions provide us with information about objects in our world. While properties also do this
to an extent, functions generally calculate some sort of number, whereas properties are more
qualitative - things like color, orientation, and so on. Like methods, we can use smaller functions
to create bigger functions that calculate more complex numbers for us.

Note that examining the world’s functions in the object tree will give you very generic functions
that can be used in a variety of applications.

Lists
A collection of items in Alice. Lists are typically not strictly ordered, meaning that items are
sometimes not necessarily presented in the order they were added to the list. When you process
a list, you do something to every item in the list. Lists use the “For All Together” and “For All In
Order” tags as well.

Arrays
A collection of items in Alice. Arrays are more strictly ordered than lists, and individual elements
can be accessed by themselves if need be. Arrays, however, do not work with the “For All
Together” and “For All In Order” tags. To process elements in an array, use the “Loop” tag.

Tags at the Bottom
If you glance at the bottom of the method editor, there are different colored tags with labels
such as “Do In Order”, “Do Together”, “If/Else”, “Loop”, and so forth. Dragging a tag into the
method editor will create a small block into which statements may be placed. The labels work
as such:

Do In Order
Statements put inside this block will execute in order, one at a time, until the
statement is completed.

Do Together
Statements put inside this block will execute simultaneously. Note that statements
after the Do Together block will not execute until every statement in the Do Together
has completed. Statements within the Do Together of longer durations will still take
longer to execute than their more brief counterparts.

If/Else
Allows a condition to be specified. If the condition evaluates to “true”, the first
segment of code will execute. If the condition evaluates to “false”, the second
segment of code will execute.

Loop
A block of looping code will repeat itself as many times as is specified when it is
dropped in. Be advised that infinite loops are dangerous and can crash your program.

While
Similar to a regular loop - a while loop will continue to repeat itself as long as the
specified condition evaluates to “true”.

For All In Order
Works specifically with lists in Alice. The block of code will execute for each item in the
list, one item at a time in order.

For All Together
Works specifically with lists in Alice. The block of code will execute simultaneously for
each item in the list.

Poses
Poses are just what they sound like. Poses allow you to save particular stances of an object to
quickly toggle among them. For instance, say I wanted to make someone dance the “Y-M-C-A”.
Instead of writing complicated methods that move their arms and head around, I could position
the character in each pose and save each pose separately. Then I can tell the character to set its
pose to each letter in the dance and it will automatically move gracefully between the poses.

Comments
Comments allow you to write lines of code that don’t execute. They are what they sound like:
adding comments to your code allows you to create quick reminders or plain-English remarks
on the function of your code. Comments are more for the user rather than the computer.

Layout of the “Add Objects” Panel

World Preview
This is what your

scene will look like.

Local Gallery
A gallery of all the object classes available in Alice.

Dummy Objects
Drops a dummy object at the

current camera position.

Switch Object Movement
Use these buttons to restrict the movement of objects when
you click to drag them around.

Single/Quad View Selector

Layout of the Alice Programming Environment

World Preview
This is what

your scene
looks like.

Events
This is where you create events that call your methods. Create

a new event by clicking the “create new event” button.

Method Editor
You can drag methods, properties, and

functions here to build more complex methods.

Details Pane
Shows the details of
whichever object is
clicked on the
object tree.
Properties, methods,
and functions can
all be found here.

Object Tree
Shows all objects in
the world. Clicking a
“+” next to an object

will show its sub-
parts.

Add Objects Button
Click this button to add
objects to your world.

Manual Camera Controls
Use these to move the camera
around.

Clipboard
Drag statements to or from this. Dragging from
will paste the last thing you dragged on top of it.

Trashcan
Drag statements here to
delete them.

